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Ladies and Gentlemen,

Afew days ago when Dr. Daroga Singh suggested that Ideliver
this year's Panse Memorial Lecture I had some hesitation to accept
(he honour that was being done to me. For, unfortunately I di na
have the privilege of coming into contact with late Dr. Panse althougn
I have been aware of his pioneering contributions to applications o
statistical methods in agriculture and other fields. However, 1am,
indeed, glad to have an opportunity to associate myself with i.
name through this lecture. I propose to present some thoughts on
historical developments of survey-sampling theory. The subsequent
dicussion would reveal why for today's talk I have preferred the
phrase, 'sampling from actual population' instead of the more familiar
and indeed satisfactory term, 'survey-samphng'.

The popular understanding today of statistics consists of
probabilistic estimates about some population characteristic li e
total production of a country or average income, based on some
random samples. But as I would demonstrate, essentially this
meshing of the probability calculus with the actual social statijics
proved to be the most diflacult job for the early probabilists. This
was true even after the probability calculus was sufficiently well
developed and sophisticated to include in it Bayes Theorem, the Law
of large Numbers etc. Indeed the present day commonplace notion
that estimates could be calculated on the basis of randomly drawn
samples is but a result of a very slow development of human thought
(far slower than the development of mathematical theory of proba
bility).

♦"Dr. Panse Mepiorial Lecture" delivereji on 29th March, 1976 in New
Delhi.



2 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

1. The Hypothetical Population Model

As is commonly understood the theory of probability originated
with the study of the chance phenomena associated with gambling
instruments such as roulette or dice. This was in 17th century and
the names of the authors usually quoted are Fermat and Pascal. The
experiment of spinning a roulette or throwing a die had a well-defined
outcome and it was clearly understood from the beginning that the
subject matter of the theory of probability was the results obtained
by repetitions of such an experiment; a random experiment. This
is not to say that formally or even informally a frequency theory of
probability, propounded later on by Von Mises in this century and
Venn in the preceding one, was taken for granted by the early pro-
babilists. Actually Leibnitz with his knowledge of jurisprudence
clearly proposed a view that probability was a relation between two
propositions. This could be considered as the origin of the 'logical
theory' of probability developed by Keynes, Jeffreys and Carnap
during the present century. Also Pascal clearly put forward what in
the present day terminology could be called decision theoretic,
subjective approach of probability. He even went onto define utilities
thus foreseeing some of the recent developments of subjective proba
bility by Ramsey, De Finetti, Savage and others. Actually the early
authors of probability theory used three aspects of the subject namely
frequency, logical and subjective often without making the distinction.
In spite of all this, it could be safely said that at least until the end
of 19th century—(and even until this day I believe) the most important
object of study for the probabilists was the results obtained by
independent repetitions over and over again, perhaps indefinitely, of
some chance experiment illustrated simply as before by spinning of a
roulette or throwing a die. Otherwise It would not be possible to
understand the most important developments in literature on the
subject during this period devoted to the study of law of large
numbers (Bernoulli early 18th century) and central limit theorems
(Laplace, 19th century). The central aspects of these works is that
they deal with the results obtained when some chance experiment is
repeated independently for a large number of times. As a matter of
fact until the end of 19th century most applications of probability
thepry required besides Bayes Theorem the law of large numbers and
the central limit theorem. The errors of measurements arising out
of astronomical data and otherwise were studied in this way. Thus
by this time probabilists perfected a very fruitful model of an infinite
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population obtained by indefinite^ independent repetitions of some
chance experiment. We shall call this a hypothetical population model,
the term first explicitly used though much later by Fisher (1956).

2. A Random Sample

This hypothetical population model was available when the
professional statistician appeared on the stage around the middle of
the 19th century. It is generally believed that statistics or statistical
theory originated with the investigations of biological and sociological
phenomena such as inheritance and the like during the last century.
Soon the statistical theory was directed towards studying relationships
between different factors that influenced those phenomena and
towards studying the underlying chance mechanisms. For instance,
the sizes of a dozen observed human skulls were supposed to have
been produced by some kind of chance mechanism operating in the
background. It was but asina,ll step to replace this chance-mechanism
by a hypothetical population generated by independent repetitions of
this chance mechanism. Thus the statistician adopted the hypothetical
population model perfected by the probabilists as mentioned in the
preceding paragraph. It is true that F. Galton, K. Pearson and
their contemporary statisticians were less explicit about it. And as I
said before the first clear recognition of the hypotherical population
model is due to Fisher. The chancemechanism determinedthe frequency
distribution in the corresponding hypothetical population. In as much
as the chance mechanism was not fully known (and hence was being
studied) soalso the corresponding frequency distribution was supposed
to be known only up to certain unknown parameter, like the mean or
the variance. For example in the simple chance mechanism of tossing
a coin, the parameter may be the 'probability of head turning up'.
Now the parameter here is objective in (he sense that it is deter
mined by the chance mechanism. But it could also be called a
(technically useful) fiction in the sense that the parameter could not
be determined by any well defined operation in contrast to some
other 'parameters' which we would discuss later in section 5. Any
way an estimate of this unknown parameter could be obtained on the
basis of some observations made on the chance mechanism. These
observations were called a random sample from the corresponding
hypothetical population. For instance the random Sample of a
dozen skulls mentioned before. Thus the general statistical theory
could be said to have evolved out of the problem of inferring, on the
basis of a 'randotn. sample' drawn from a hypothetical population, the
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associated frequency function containing an. unfcnovyn parameter.
Most importantly thei randomness here is postulqtional in contrast to
physical randomisation which we would discuss subsequently
Section 5.

m

3. Actual Populations

In relation to the general satatistical theory just mentioned one
must note the interesting development concerning social statistics that
was taking place since late 17th century. The development wassome
what independent of the development of the theory of probability. In
1662 Graunt published in England his work on social statistics. This
contained mortality tables, vital statistics, bills of birth and death etc.
The tables were constructed from the data collected in an arbitrary or
haphazard manner from thepopulation. In contrast to the hypothetical
population discussed previously this population was real or actual.
It could consist of households in a country or men, women of a
society. These tables on social statistics then provided the basis for
fixing rates of annuities or taxes. Some calculations made in this
respect would now look utterly absurd. The satistical arguments then
made were very primitive and even grossly erroneous. This one could
say even after the more scholarly work of De Witt from Denmark
and others which followed Graunt's publication. The most striking
feature of all this work on social statistics is that the authors do not
seem to be at all aware of the fact that the tables on social statistics
used for fixing annuities, taxes, etc. could themselves be improved
if they were based on a properly drawn sample instead of some
arbitarily collected data from the population. This awareness was
to come much later.

4. Early Contributions to Sampling from Actual Populations

During the nineteenth century apparently it was recognised that
one could make inferences concerning an actual (finite) population
characteristic such as its mean on the basis of sampled observations,
with the help of the calculus of probability. Laplace for instance is
said to have estimated the number of French people on the basis of
a sample and also the ratio of male to female births. Interesting
discussion concerning some surveys conducted in Germany during
19th century, is found in Schott (1923). For other discussions on
the topic around 1900 we refer to Bowley (1906). An early example
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of this is from the 13th ceiitury'England: "Riiles" of Robert Grosse-
teste, Bishop of Lincoln (124Q-1242) as quoted by. OschinsRy (1971)
in which the lord or lady is advised to estimate the total amount of
grain in the barn by commandiiig that every twentieth sheaf should
be examined as it enters. The oldest instance I know of, of the sug
gestion that calculus of probability could be used to make inferences
about an actual population total on the basis of a sampleis to be
found in Mahabharat, the great Indian epic. I am tempted to give!
some details. This is from Vana-Parva; Nala-Damayanti Akhyan:

The God Kali has his eye on a beautiful princess and is
dismayed when Nala wins her hand. In revenge an evil spirit
enters the body of the virtuous prince. Crazed with frenzy for
gambling, Nala loses his kingdom, and wanders demented for
many years. Nala's change of fortune is described in a
remarkable anecdote. In an alien form, he has been travelling
with another king Bhangasuri. This latter, wanting to flaunt
his skill in numbers, estimates the number of leaves, and the
number of fruit, on two great branches of a spreading tree.
There are, he avers, 2,095 fruits. Nala counts all night and is
duly amazed by morning. Bhangasuri accepts his due;

I of dice possess the science, and in numbers thus am
skilled.

He agrees to teach this science to Nala in exchange for some
classes in horsemanship, in which, despite his exiile, Nala still
excels. At the end of this sensational course in survey-sampling
Nala vomits out the poison of Kali, and is restored his normal
form. Kali, exorcised by mathematics, retires to the tree. Nala
returns to his kingdom, olfers.his still faithful bride as his final
stake and quickly recoups all his losses, and lives happily ever
after.

(Reproduced from History and Philosophy of Science Seminar by
Ian Hacking)

It is important to see what sort of use of the calculus of
probability was envisaged by the authors in the preceding paragraph.
As I said before, until the end of, the 19th century the most often
employed tools for statistibar infer^iice apart from Biayes theorem
were law of large numbers and central limit theorem. These theorems
were concerned with identically and indeperidently distributed vari
ables ; the underlying model being that of a hypotheticial population
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of Section 11, from which unlimited numbers of observations could
be made in a sequence. Thus the survey statistician though
he was studying and sampling an actual (finite) population, assumed
at least subconsciously the model of a hypothetical population. For
instance he may be estimating average income per household in the
country. The actual population of households of course was
before him. But he was considering the hypothetical population of
observations generated by repeated draws. The distribution of the
variate in this hypothetical population was assumed to have certain
form say normal. To draw a sample consistent with these assump
tions, it was thought necessary to have a method of drawing which
will not have bias concerning the variate under—study. For instance
the method of drawing should not be such that it would tend to
select 'richer' (or poorer) households more often. 'The average
income per household in the actual population' was by means of law
of large numbers or by some other reasonable manner not made
explicit, was identified as the unknown parameter of the hypothetical
population. Now as I said earlier in Section 2 'sampling' of a
hypothetical population posiuJationally implies that the given set of
observations constitute a random sample; one may at most divide
(stratify) it in groups if there is enough heterogeneity. And a survey
sampling statistician' working (implicitly or explicitly) with the
hypothetical population model could do no better than this. This
gave rise to what is now populary understood as 'representative
method ofsampling'. One may for instance balance the sample by
making the sample mean equal to the population mean for some known
variable of which total count was available, The randomness of the

sample was any way just postulational. This representative method
as the foregoing discussion would suggest in the present day termino
logy, is more purposive than random. At any rate it envisaged no
use of artificial device such as random number tables to draw a

sample. A still more important point to be emphasised here is that
in the inference or estimation procedure, the distribution generated
by randomisation, played no important role. As we know in the
later development of sampling theory and practice this 'distribution
generated by randomisation' played a central role.

5. Randomisation with Artificial Devices

A new era first in sampling practice and then in sampling
theory was ushered when artificial device to draw a random sample
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was used. An early recorded instance of this is a survey conducted
in Sweden in 1912 (Dalenius, 1957) to study housing conditions.
The publication and use of random number tables was still an event
of a later date.

With the use of artificial randomisation devices like throwing
of a die or random number tables to draw a random sample from an
actual population, the concept of the distribution generated by
randomisation started getting crystallized. That such a distribution
must play 'an important' if not 'the central' role in inference also
was gradually realised. The first theoretical formulation of this
however was in relation to the problems of 'design of experiments'
by Fisher in 1926. In relation to survey sampling the first well-
known attempt is due to Neyman (1934) though there were not so
well-known formulations previously. Our subsequent discussion of
randomisation would be primarily in relation to survey-sampling.

The introduction of artificial devices of randomisation to draw
a random sample posed a logically distinctive situation than the ones
dealt with by the general statistical theory of Galton, Pearson and
Fisher mentioned earlier in Section 2. This was the distinction:
The use of artificial devices of randomisation evidently presuppose
an actual population with explicitly labelled individuals such as for
instance the population of households in a town or the population of
farms in a village. Such population admits infinite modes of sam
pling ; each subset ofindividuals in principle could be selected with
arbitrarily fixed probability. In contrast as we have observed before
'sampling' hypothetical population implies simple random sampling
with the possible variation of stratification. Again the labels of the
individuals of an actual population provide much wider modes of
estimation than those available for a hypothetical population. These
new modes of estimation did not . admit the traditional treatment
accorded to the problem by the general statistical theory. A basic
reformulation of the problem was necesary. To make the distinction
between actual andhypothetical population still explicit we observe
as before in Section 2 that the parameter of a hypothetical population
(say probability of success in the coin tossing experiment) is also
hypothetical while the parameter ofan actual population (say average
income per household in a town) is real in the sense that the latter
could be determined in principle by a total count. In fact, inferring
about some unknown parameter of a hypothetical population was
equivalent to inferring about the chance mechanism which generated
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the population. In contrast, in the case of an actual population
the only chance mechanism was the mode of randomisation of
sampling which wa^ completely known to the statistician. Irrespective
of this mode of randomisation, the parameter of an actual popu
lation had its existence and could be determined by the total count.
We illustrate these distinctions in our review of Neyman's work on
the subject, in the next section.

6. Neyman's Approach

With the above historic perspective it seems to me that Neyman
(1934) in his well-known paper on survey-sampling tacitly attempted
to .fit the sampling theory of actual populations within the classical
model of hypothetical population. This model, as it was previously
(Section 2) pointed out, underlay the general statistical theory. Now
as we observed in Section 4 that., while 'sampling' a hypothetical
population the observations are independent and are arranged in a
natural sequence, 1st observation say :!Ci, 2nd A:.i,.../th say .*(...and
so on. In fact the only way to distinguish between two obser
vations apart from their variate values {x say) is by the order in
which they appear. In this case if the expectation of each jc is
some unknown 0, E{x^=6, n say a statement such as,

'among all unbiased linear estimates {i.e. of the form S OiXi) mean
1

X, of the n observations has minimum variance' is of considerable
statistical relevance. Such a statement, however, in case of sampling
actual population becomes of doubtful relevance as we would
subsequently show.

In his 1934 paper, Neyman using the then novel Gauss-Markoff
technique of least squares obtained linear unbiased least variance
estimates in the sense stated in the above paragraph for mean of
actual (survey) population assuming simple random sampling with or
without replacement and with stratification. On the basis of his above
'optimum' estimates he compared eflBciencies of dififerent modes of
stratification with appropriate sample size allocations.

The success of Neyman's work appeared so overwhelming
that for several years to follow sample survey statisticians often
concerned themselves with finding linear unbiased least variance
estimates with the halp of Gauss-Markoff theorem, for different
situations. The situation at times might have. been characterised
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by the prior knowledge of some correlation coefficient, etc. This
invariably resulted in the claims like the regression estimate, the
ratio estimates (allowing for the small bias)..., etc. were linear
unbiased least variance estimates for the survey-population mean,
provided 'such and such' conditions were satisfied. Talk of 'most
efficient estimates' become common. Ample instances of this are
provided by the text books on the subject.

Again, more elaborate sampling procedures such as sampling
with arbitrary probabilities and the like were put forward to reduce
the variance of estimates. But essentially these elaborate sarnpling
procedures suggested the logical inadequacy of Neyman's approach
based on Gauss-Maikoff theorem. It as easy to illustrate this;

Let the population consist of four individuals labelled as
(1, 2, 3, 4), the corresponding variate values being (Z], X^, Xz, X^).
We make three draws using simple random sampling with replace
ment from this population. Let value at the first draw be Xj
that at the second be and that at the third be x.^. Now as a very
special ease of Gauss-Markoff theorem we can assert that of all the
linear unbiased estimates01X1 + 02X2+^3X3 of (X3^+X2+X3+X^)I4. i.e.
E{aiXi+azX^-^-03X3)= (Xi+Xi+X3+Xi)l4 the variance is minimised
when ai=a2=C3=i I.e. for the sample,mean (Xi+X2+X3)/3. But
this assertion because of the, existence of the labels of the indivi
duals, (1, 2, 3, 4) unlike in the case of hypothetical population is
of very doubtful statistical significance : For, making draws with
some artificial device of randomisation' essentially implies that at
each draw we first observe the individual (label) drawn and then
its A'-value. With the use of these labels we can for instance calcu
late mean over only distinct individuals in the three draws ; that
is even if an individual is repeatedly drawn in' three draws it is
counted only once for computing the mean. Now this mean is an
unbiased estimate for (Xi + ...+Xi)l4 and can be shown to have
smaller variance than that of (Xi+Xa+X3)/3. But the-mean over
distinct individuals is an estimate clearly outside Gauss-Markoff set
up and so are all the estimates which effectively utilize the labels.
And in the class of all unbiased estimates which take into account
individual labels none has uniformly smallest variance (Godambe
1955).

7. The New Model

The negative result mentioned at the end of the last section in
fact necessitated the replacement of the hypothetical population model
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by a new model which is essentially based on the recognition of
individual labels. In effect, for the new model a generic point in the
sample-space is a subset of individuals (labels) from the population
that could possibly be selected along with the corresponding variate
values. (For instance in the example of a population with 4 indvi-
duals (1, 2, 3, 4) with corresponding variate values (Z^, X2, Zg, ZJ,
(1, 2; A'l, Z2) is a point in the sample-space). Naturally now the
parameter is the vector of all variate values associated with the
different individuals in the population. In the example just referred
to, the parameter is (Zj, X^, Z3, ZJ. The value of this parameter
together with the sampling scheme determines the distribution on the
sample-space, defined above. This new model at once provided a
frame work within which different statistical concepts and tools could
be brought to bear upon sampling from actual or survey populations.
That is survey-sampling became an integral part of the general
statistical theory. For details we refer to Godambe (1966).

The new model proved to be specially fruitful for studying the
different aspects of randomisation: Bayesian non-Bayesian of various
types. From a thorough going Bayesian view point it seems that the
only purpose of randomisation would be to protect the assumption
of exchangeability of the prior distribution*. This, at most can
explain stratified simple random sampling. Another approach not
quite Bayesian but dose to it is to assume a class of parameterized
prior distributions and to infer, about the actual population mean
say, with the help of the least squares technique and the like pro
vide by general statistical theory. This approach is not much
different than the one envisaged by the authors around the turn
of 19th century. (Bowley,1906). Neither does this approach can
take us far enough to interpret randomisation. Particularly unequal
probability sampling (in its sufficient generality) is out of its
reach. At the other extreme Neyman's thorough going frequency
approach provides legitimate confidence intervals for many arbitrarily
chosen modes of randomisation i.e., arbitrary sampling schemes.
Having many answers to a question is as bad as having no
answer at all.. Hence a satisfactory solution must lie somewhere in
between the two views mentioned above. And already such a solution
is suggested by, if not implied in, the brilliant works on randomi
sation by Fisher and others during 1930-1940, though these works

*In the context of the foregoing discussion this prior distribution and
those mentioned subsequently would relate to some hypothetical population than
an actual one. But to avoid confusion one may keep them unclassified.
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were in relation to design of experiments. Fisher (1936) asserted
that the inferences based on the assumption of Normal distribution
were valid only because they approximately agreed with the inferences
based on the distribution generated by randomisation!. This asser
tion can be explicated as follows:

Let us suppose that the prior knowledge (often unformalised)
concerning the actual population under study suggests that the
variate values in the population are approximately normally dis
tributed. That is if these variate values are plotted on a graph
paper, the graph would be approximately normal. This may be
because ofthe following more definite assumption on the, part of the
statistician.

Assumption. The actual population under study is a random
sample from a prior distribution (or super population) which is
normal.

From tha above Assumption it follows that the variate values
associated with any arbitrarily chosen subset of individuals from the
actual population is a random sample from the super population.
With this one can make inference about the actual population, its
mean say, with traditional techniques provided by the general statisti
cal theory. This inference is not based on any distribution generated
by randomisation. And as I said before the Assumption implies that
the inference would be valid even if one draws the subset of indivi
duals from the population in any arbitrary manner. But the inference
would be invalid if the Assumption goes wrong in some sense. On
the other hand the same inference (or approximately so) could be
validated in terms of the distribution generated by randomisation if
the subset of individuals were drawn at random with some suitable
device. This later validation is of course independent of the above
Assumption. Thus, the randomisation has protected the inference
against the possibility of the Assumption being wrong. Let me
emphasise that strictly, when the Assumption obtains, to use the
distribution given by randomisation in inference is against all canons
ofstatistical thinking. But seldom, if ever, in practice, the statistician
would be strictly unerring while making assumptions. To err is
human. Yet it is absurd not to make 'what look like plausible
assumptions. Then wisely enough, one should randomise to protect
the inference if the assumptions go wrong. Curiously enough the

tHere and subsequently when we say 'randomisation' without any
qualification we imply 'simple random sampling'.
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distribution generated by the raadomisation can have inferential
value strictly when the Assumption does not obtain and is not
replaced by any alternative assumption. For then logically the
situation is equivalent to that of "no prior knowledge", implying no
possible conditioning of frequencies. Therefore the frequencies given
by randomisation are inferentially valid.

In the above discussion I have considered a rather extreme and
also a very simple situation. It is extreme in the sense that in practice
a statistician would consider possibility of his assumptions going
wrong not totally, but in some respects. He could then randomise to
protect only the corresponding aspects of his inference. The situation
considered above is simple in the sense that only simple random
sampling is considered. But a large part of survey-practice employing
very sophisticated modes of randomisation, inclusion probabilities
proportional to size and the like, could also be interpreted similarly.
For details a reference is Godamble and Thompson ('1975).
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